Математическая основа карт. понятие об искажениях, масштабах, координатах

Основа: а) геодезическая основа; б) масштаб; в) картографическая проекция; г) разграфка. Земля шарообразна, т.е. не обладает формой идеального шара. Фигура немного сплюснута у полюсов. Фигуру нашей планеты называют геоидом. Точно определить его форму практически невозможно, но современные высокоточные измерения со спутников позволяют иметь о нем достаточно хорошее представление и даже описать уравнением. Наилучшее геометрическое приближение к реальной фигуре Земли дает эллипсоид вращения — геометрическое тело, которое образуется при вращении эллипса вокруг его малой оси. Сжатие эллипсоида моделирует сжатие планеты у полюсов. Вычисление и уточнение размеров земного эллипсоида, начатое еще в XVIII в., продолжается по сей день. Теперь для этого используют спутниковые наблюдения и точные гравиметрические измерения. Нужно рассчитать геометрически правильную фигуру — референц-эллипсоид, который наилучшим образом приближен к геоиду и относительно которого будут выполняться все геодезические вычисления и рассчитываться картографические проекции. Многие исследователи, пользуясь разными исходными данными и методиками расчета, получают неодинаковые результаты. Поэтому исторически сложилось так, что в разные времена и в разных странах были приняты и законодательно закреплены различные эллипсоиды, и их параметры не совпадают между собой. Карты, составленные на основе разных эллипсоидов, получаются в несколько различающихся координатных системах, что создает неудобства. Однако для принятия единого международного эллипсоида требуется перевычислить координаты и пересоставить все карты, а это долгое, сложное и, главное, дорогостоящее дело. Несовпадения бывают заметны главным образом на крупномасштабных картах при определении по ним точных координат объектов. Но на широко используемых географами средне- и мелкомасштабных картах такие различия не очень чувствительны. Более того, иногда вместо эллипсоида берут шар и тогда в качестве среднего радиуса Земли принимают величину R = 6367,6 км. Погрешности при замене эллипсоида шаром оказываются столь малы, что никак не проявляются на большинстве географических карт. Для того чтобы добиться наименьших искажений, применяют также способ двойного проектирования: сперва эллипсоид проектируют на шар, а затем шар — на плоскость. При равновеликом отображении, когда площадь поверхности эллипсоида Красовского должна быть равна площади поверхности шара, радиус его оказывается равным R = 6 371 116 м.

Масштабы карт. Масштаб карты — степень уменьшения объектов на карте относительно их размеров на земной поверхности (точнее, на поверхности эллипсоида). Строго говоря, масштаб постоянен только на планах, охватывающих небольшие участки территории. На географических картах он меняется от места к месту и даже в одной точке — по разным направлениям, что связано с переходом от сферической поверхности планеты к плоскому изображению. Поэтому различают главный и частный масштабы карт. Главный масштаб показывает, во сколько раз линейные размеры на карте уменьшены по отношению к эллипсоиду или шару. Этот масштаб подписывают на карте, но необходимо иметь в виду, что он справедлив лишь для отдельных линий и точек, где искажения отсутствуют. Частный масштаб отражает соотношения размеров объектов на карте и эллипсоиде (шаре) в данной точке. Он может быть больше или меньше главного. Частный масштаб длин показывает отношение длины бесконечно малого отрезка на карте к длине бесконечно малого отрезка на поверхности эллипсоида или шара, а частный масштаб площадей передает аналогичные соотношения бесконечно малых площадей на карте и эллипсоиде или шаре. В общем случае чем мельче масштаб картографического изображения и чем обширнее территория, тем сильнее сказываются различия между главным и частным масштабами. Масштаб указывается на картах в разных вариантах. Численный масштаб представляет собой дробь с единицей в числителе, он показывает, во сколько раз длины на карте меньше соответствующих длин на местности (например, 1:1 000 000). Линейный (графический) масштаб дается на полях карты в виде линейки, разделенной на равные части (обычно сантиметры), с подписями, означающими соответствующие расстояния на местности. Он удобен для измерений по карте. Именованный масштаб указывает в виде подписи, какое расстояние на местности соответствует одному сантиметру на карте (например, в 1 см 1 км). Картографические проекции. Картографическая проекция — это математически определенное отображение поверхности эллипсоида или шара (глобуса) на плоскость карты.

Проекция устанавливает однозначное соответствие между геодезическими координатами точек (широтой В и долготой L) и их прямоугольными координатами (Хи Y) на карте.

Теория картографических проекций составляет главное содержание математической картографии. В этом разделе разрабатывают методы изыскания новых проекций для разных территорий и разных задач, создают приемы и алгоритмы анализа проекций, оценки распределения и величин искажений. Особый круг задач связан с учетом этих искажений при измерениях по картам, переходом из одной проекции в другую и т. п. Компьютерные технологии позволяют рассчитывать проекции с заданными свойствами. Исходная аксиома при изыскании любых картографических проекций состоит в том, что сферическую поверхность земного шара (эллипсоида, глобуса) нельзя развернуть на плоскости карты без искажений. Неизбежно возникают деформации — сжатия и растяжения, различные по величине и направлениию. Именно поэтому на карте возникает непостоянство масштабов длин и площадей. Иногда искажения картографических проекций очень заметны, например очертания материков выглядят непривычно вытянутыми или сплющенными, а другие части изображения становятся раздутыми. Искажаются не только размеры, но и формы объектов. В картографических проекциях могут присутствовать следующие виды искажений: а)искажения длин — вследствие этого масштаб карты непостоянен в разных точках и по разным направлениям, а длины линий и расстояния искажены; б) искажения площадей — масштаб площадей в разных точках карты различен, что является прямым следствием искажений длин и нарушает размеры объектов; в) искажения углов — углы между направлениями на карте искажены относительно тех же углов на местности; г) искажения форм — фигуры на карте деформированы и не подобны фигурам на местности, что прямо связано с искажениями углов. Любая бесконечно малая окружность на шаре (эллипсоиде) предстает на карте бесконечно малым эллипсом — его называют эллипсом искажений. Для наглядности вместо бесконечно малого эллипса обычно рассматривают эллипс конечных размеров. Его размеры и форма отражают искажения длин, площадей и углов, а ориентировка большой оси относительно меридиана и параллели — направление наибольшего растяжения. Большая ось эллипса искажений характеризует наибольшее растяжение в данной точке, а малая ось — наибольшее сжатие, отрезки вдоль меридиана и параллели соответственно характеризуют частные масштабы по меридиану т и параллели п. В ряде проекций существуют линии и точки, где искажения отсутствуют и сохраняется главный масштаб карты — это линии и тонки нулевых искажений. Для наиболее употребительных проекций существуют специальные вспомогательные карты, на которых показаны эти линии и точки, а кроме того проведены изоколы — линии равных искажений длин, площадей, углов или форм. При определении размеров искажений в заданной точке можно воспользоваться картами изокол либо провести несложные измерения, а затем — вычисления по приведенным выше формулам. Классификация проекций по характеру искажений: а) равновеликие проекции сохраняют площади без искажений. Такие проекции удобны для измерения площадей объектов, однако, в них значительно нарушены углы и формы, что особенно заметно для больших территорий; б) равноугольные проекции оставляют без искажений углы и формы контуров, показанных на карте (ранее такие проекции называли конформными). Элементарная окружность в таких проекциях всегда остается окружностью, но размеры ее сильно меняются. Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту, поэтому их всегда используют на навигационных картах. Зато карты, составленные в равноугольных проекциях, имеют значительные искажения площадей; в) равнопромежуточные проекции — произвольные проекции, в которых масштаб длин по одному из главных направлений постоянен и обычно равен главному масштабу карты. Соответственно различают проекции равнопромежуточные по меридианам — в них без искажений остается масштаб вдоль меридианов, и равнопромежуточные по параллелям — в них сохраняется постоянным масштаб вдоль параллелей. В таких проекциях присутствуют искажения площадей и углов, но они как бы уравновешиваются; г) произвольные проекции — это все остальные виды проекций, в которых в тех или иных произвольных соотношениях искажаются и площади, и углы (формы). При их построении стремятся найти наиболее выгодное для каждого конкретного случая распределение искажений, достигая как бы некоторого компромисса. Скажем, выбирают проекции с минимальными искажениями в центральной части карты, «сбрасывая» все сжатия и растяжения к краям.